Our model system for this study consists of two masses, m1 and m2, each connected to a fixed support by springs of spring constants k1 and k3, and coupled to each other by a third spring of spring constant k2. There is some equilibrium position where the net force on each mass is zero. Measure the locations of each mass from their corresponding equilibrium position, call them x1 and x2. Then the kinetic energy of the system is
T = ½m1x1dot² + ½m2x2dot²The potential energy of the system comes from stretching or compressing the springs. The change in length of k1 is x1 and the change in length of k3 is x2. The change in length of k2 is (x1 - x2); if both masses are displaced by an equal amount in the same direction, then k2 doesn't change length. The potential energy is
U = ½k1x1² + ½k2(x1 - x2)² + ½k3x2²The Lagrangian for the system is
Lagrange's equations yield the following equations of motion
This can be written more compactly (and usefully) by introducing matrix notation. Let x be the column vector (x1, x2), then xdot is the column vector (x1dot, x2dot), and xddot is the column vector (x1ddot, x2ddot). The equations of motion can be written in the form
where M is the diagonal matrix [(m1, 0), (0, m2)] and K is the matrix [((k1 + k2), -k2), (-k2, (k2 + k3))].